lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling

نویسندگان

  • Junyi Liao
  • Xinyi Yu
  • Xue Hu
  • Jiaming Fan
  • Jing Wang
  • Zhicai Zhang
  • Chen Zhao
  • Zongyue Zeng
  • Yi Shu
  • Ruyi Zhang
  • Shujuan Yan
  • Yasha Li
  • Wenwen Zhang
  • Jing Cui
  • Chao Ma
  • Li Li
  • Yichun Yu
  • Tingting Wu
  • Xingye Wu
  • Jiayan Lei
  • Jia Wang
  • Chao Yang
  • Ke Wu
  • Ying Wu
  • Jun Tang
  • Bai-Cheng He
  • Zhong-Liang Deng
  • Hue H. Luu
  • Rex C. Haydon
  • Russell R. Reid
  • Michael J. Lee
  • Jennifer Moriatis Wolf
  • Wei Huang
  • Tong-Chuan He
چکیده

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can undergo self-renewal and differentiate into multiple lineages. Osteogenic differentiation from MSCs is a well-orchestrated process and regulated by multiple signaling pathways. We previously demonstrated that BMP9 is one of the most potent osteogenic factors. However, molecular mechanism through which BMP9 governs osteoblastic differentiation remains to be fully understood. Increasing evidence indicates noncoding RNAs (ncRNAs) may play important regulatory roles in many physiological and/or pathologic processes. In this study, we investigate the role of lncRNA H19 in BMP9-regulated osteogenic differentiation of MSCs. We demonstrated that H19 was sharply upregulated at the early stage of BMP9 stimulation of MSCs, followed by a rapid decease and gradual return to basal level. This process was correlated with BMP9-induced expression of osteogenic markers. Interestingly, either constitutive H19 expression or silencing H19 expression in MSCs significantly impaired BMP9-induced osteogenic differentiation in vitro and in vivo, which was effectively rescued by the activation of Notch signaling. Either constitutive H19 expression or silencing H19 expression led to the increased expression of a group of miRNAs that are predicted to target Notch ligands and receptors. Thus, these results indicate that lncRNA H19 functions as an important mediator of BMP9 signaling by modulating Notch signaling-targeting miRNAs. Our findings suggest that the well-coordinated biphasic expression of lncRNA H19 may be essential in BMP9-induced osteogenic differentiation of MSCs, and that dysregulated H19 expression may impair normal osteogenesis, leading to pathogenic processes, such as bone tumor development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling

Notch is an important pathway in that it regulates cell-to-cell signal transduction, which plays an essential role in skeletal remodeling. Bone morphogenetic protein (BMP)9 has been regarded as one of the most efficient BMPs by which to induce osteogenic differentiation in mesenchymal stem cells (MSCs). Understanding the interaction between Notch and BMP9 signaling is a critical issue for optim...

متن کامل

Activation of PKA/CREB Signaling is Involved in BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells.

BACKGROUND/AIMS BMP9 is highly capable of promoting osteogenic differentiation of mesenchymal stem cells (MSCs) although the molecular mechanism involved is largely unknown. Here, we explored the detail role of PKA/CREB signaling in BMP9-induced osteogenic differentiation. METHODS Activation status of PKA/CREB signaling is assessed by nonradioactive assay and Western blot. Using PKA inhibitor...

متن کامل

Notch signaling negatively regulates BMP9-induced osteogenic differentiation of mesenchymal progenitor cells by inhibiting JunB expression

Although interaction between BMP and Notch signaling has been demonstrated to be crucial for osteogenic differentiation of mesenchymal stem cells (MSCs), the precise molecular mechanism remains unknown. Here, we show that Notch intracellular domain (NICD) overexpression inhibits BMP9-induced C3H10T1/2 cell osteogenesis in vivo and in vitro. Our results show that activated Notch signaling result...

متن کامل

IGF1 potentiates BMP9-induced osteogenic differentiation in mesenchymal stem cells through the enhancement of BMP/Smad signaling

Engineered bone tissue is thought to be the ideal alternative for bone grafts in the treatment of related bone diseases. BMP9 has been demonstrated as one of the most osteogenic factors, and enhancement of BMP9-induced osteogenesis will greatly accelerate the development of bone tissue engineering. Here, we investigated the effect of insulin-like growth factor 1 (IGF1) on BMP9-induced osteogeni...

متن کامل

Activation of JNKs is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells

Although BMP9 is highly capable of promoting osteogenic differentiation of mesenchymal stem cell (MSCs), the molecular mechanism involved remains to be fully elucidated. Here, we explore the possible involvement and detail role of JNKs (c-Jun N-terminal kinases) in BMP9-induced osteogenic differentiation of MSCs. It was found that BMP9 stimulated the activation of JNKs in MSCs. BMP9-induced ost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017